

### ANALÝZA ZPĚTNÉHO ODPRUŽENÍ ÚHLOVÝCH PROFILŮ Z KOMPOZITŮ S TERMOPLASTICKOU MATRICÍ

Z. Padovec, M. Růžička, V. Stavrovský, V. Sháněl, M. Dvořák, H. Chlup

ČVUT v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky

### Obsah přednášky

- Úvod
- Analytické modely
- Zpětné odpružení
- zvlněná vlákna (tkaniny)
  - přímá vlákna
  - jednosměrná x vrstvená deska
  - symetrie x nesymetrie
  - rovná deska x jedna křivost x dvě křivosti
- Porovnání modelů pro C/PPS desky
- Vliv matrice na zpětné odpružení (porovnání s C/PEEK a C/PEKK)
- Numerický model
- Popis experimentu
- Vliv proměnného objemového podílu vláken v rádiech
- Verifikace analytického modelu s výsledky pro hybridní kompozity
- Ukázka programu
- Závěr

## Úvod

- zbytková napětí během vytvrzování laminátu vedou k jeho rozměrovým změnám po vyjmutí z formy
- jednou z těchto změn je <u>zpětné odpružení</u> úhlových sekcí (mezi ostatní patří například průhyb rovinných sekcí, zvrásnění na povrchu, posun jednotlivých vrstev vůči sobě, atd…)
- zpětné odpružení závisí na mnoha parametrech (velikost úhlu, tloušťka kompozitu, skladba, délka pásnic, materiál a povrch formy, vytvrzovací proces,...)



## Úvod

- změna úhlu součásti po vyjmutí z formy 1-2,5° modifikace formy
- příčiny zpětného odpružení:
  - rozdíl v koeficientech teplotní roztažnosti v podélném a příčném (po tloušťce) směru
  - rozdíl v koeficientech hygroskopické roztažnosti v podélném a příčném (po tloušťce) směru
  - smrštění matrice během vytvrzovacího cyklu



nutná



## Úvod

- kompozity s termoplastickou matricí
  - rozdílná výrobní technologie než pro termosety
  - opakovatelnost procesu
  - houževnatost
  - dobrá pevnost v tlaku
  - damage tolerance
  - dielektrické vlastnosti
  - nízká absorpce vlhkosti



- zvlněná vlákna (tkaniny) dle Kabelky
- vstupní data pro model
  - hmotnost tkaniny *M* [g/m<sup>2</sup>]
  - dostava n [1/cm]
  - tloušťka tkaniny h [mm]
  - materiál a geometrie osnovy a útku
  - typ vazby



- zvlněná vlákna (tkaniny)
- termoelastické charakteristiky kompozitu = termoelastické charakteristiky elementu, typického pro danou vazbu
- element I typický pro plátnovou vazbu
- keprová a atlasová vazba lze složit z kombinace elementů l a ll



- zvlněná vlákna (tkaniny)
- předpoklady
  - tloušťka elementu je dána součtem tloušťek vláken a matrice
  - vazba je těsná
  - zvlnění vláken je pravidelné (sinus) a vlákna jsou prizmatická
  - vlákna jsou v průřezu rovnoměrně rozdělena
  - matrice i vlákna jsou lineárně elastická, matrice je isotropní, vlákna transversálně isotropní
  - teplota je stejná v celém objemu, neexistují žádná zbytková napětí
  - v celém objemu nejsou žádné jiné komponenty nebo poruchy kromě vlákna a matrice

- zvlněná vlákna (tkaniny)
- efektivní vlastnosti elementu l jsou  $s_{ij} = \frac{1}{2\Omega} \int_{-\Omega}^{u} s_{ij}(\omega) d\omega$ , kde  $S_{ij}$  jsou prvky matice poddajnosti,  $\Omega$  je maximální hodnota  $\omega$ , což je úhel zvlnění vláken v osnově (respektive v útku) a závisí na tloušťce a výšce pramenců
- efektivní vlastnosti pro keprovou a atlasovou vazbu leží mezi krajními případy – element I a II – matice poddajnosti je vypočítaná jako průměrná hodnota z charakteristik pro element I a II ( $S_I a S_{II}$ ), tj.  $\overline{s} = \frac{iS_I + jS_{II}}{i+j}$

- zvlněná vlákna (tkaniny)
- integrací a nahrazení goniometrických funkcí prvními členy Taylorova rozvoje obdržíme rovnice pro efektivní charakteristiky pro osnovu (respektive útek)

$${}^{1}E_{x} = \frac{E_{L}}{1 + \frac{\Omega^{2}}{3} \left[ \frac{E_{L}}{G_{LT}} - 2(1 + v_{LT}) \right]} \qquad {}^{1}E_{y} = E_{T} \qquad {}^{1}G_{xy} = \frac{G_{LT}}{1 + \frac{\Omega^{2}}{3} \left( \frac{G_{LT}}{G_{TT'}} - 1 \right)}$$

. .

• je-li Ω=0,

přejdou tyto vztahy do vztahů pro přímá vlákna

- přímá vlákna
- mikromechanika dle Chamise

$$E_L = V_f E_{fL} + (1 - V_f) E_m \qquad E_T = \frac{E_m}{1 - \sqrt{V_f} \left(1 - \frac{E_m}{E_{fT}}\right)} \qquad E_{T'} = E_T$$



• jednosměrná deska – odvození pro teplotní vliv



- jednosměrná deska ostatní vlivy
- zpětné odpružení vlivem absorpce vlhkosti
- zpětné odpružení vlivem smrštění matrice během vytvrzování
  - důležité u matric, které během vytvrzovacího cyklu přechází z amorfní do krystalické fáze
  - krystaly mají větší hustotu než amorfní fáze
  - může mít větší vliv než změna teploty
  - pouze u semikrystalických matric
- celková úhlová změna lze zapsat jako superpozice těchto tří efektů

$$\Delta \gamma = \Delta \gamma_t + \Delta \gamma_h + \Delta \gamma_c = \gamma \frac{(\alpha_x - \alpha_z)\Delta T}{1 + \alpha_z \Delta T} + \gamma \frac{(\beta_x - \beta_z)\Delta c}{1 + \beta_z} + \gamma \frac{(\phi_x - \phi_z)\Delta t}{1 + \phi_z}$$



- vrstvená deska
- nutno spočítat změnu tloušťky od jednotlivých vlivů
- komplikované odvození, klasická laminační teorie nestačí (rovinný problém)  $\begin{bmatrix} \sigma_x \end{bmatrix} = \left(\begin{bmatrix} \varepsilon_x \end{bmatrix} \begin{bmatrix} \alpha_x \end{bmatrix} \begin{bmatrix} \beta_x \end{bmatrix} \begin{bmatrix} \phi_x \end{bmatrix}^{\alpha_x} \end{bmatrix}$



- vrstvená deska
- analogické odvození pro vliv vlhkosti a smrštění matrice

$$\Delta H^{h} = \sum_{k=1}^{N} \left\{ \begin{bmatrix} S_{13} & S_{23} & S_{36} \end{bmatrix} \begin{bmatrix} T_{q} \end{bmatrix}_{k} \left( (z_{k} - z_{k-1}) \begin{bmatrix} \bar{Q} \end{bmatrix}_{k} \left( \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} - \Delta c \begin{bmatrix} \beta_{x} \\ \beta_{y} \\ \beta_{xy} \end{bmatrix}_{k} \right) + \frac{z_{k}^{2} - z_{k-1}^{2}}{2} \begin{bmatrix} \bar{Q} \end{bmatrix}_{k} \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix} + (z_{k} - z_{k-1}) (\Delta c (\beta_{3})_{k}) \right\}$$

$$\Delta H^{c} = \sum_{k=1}^{N} \left\{ \begin{bmatrix} S_{13} & S_{23} & S_{36} \end{bmatrix} \begin{bmatrix} T_{q} \end{bmatrix}_{k} \left( (z_{k} - z_{k-1}) \begin{bmatrix} \bar{Q} \end{bmatrix}_{k} \left( \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} - \begin{bmatrix} \Phi_{x} \\ \Phi_{y} \\ \Phi_{xy} \end{bmatrix}_{k} \right) + \frac{z_{k}^{2} - z_{k-1}^{2}}{2} \begin{bmatrix} \bar{Q} \end{bmatrix}_{k} \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix} + (z_{k} - z_{k-1}) (\Phi_{3})_{k} \right\}$$

21.11.2012

- vrstvená deska
- rovná deska



- vrstvená deska
- deska s jednou křivostí

$$\kappa_y^T \Rightarrow \kappa_y^T + \frac{1}{R_y} \left( \varepsilon_y^T - \varepsilon_z^T \right)$$



• deska se dvěma křivostmi

| (N <sup>thc</sup> ) |   |                 |                 |                 |          |          |                   |  |
|---------------------|---|-----------------|-----------------|-----------------|----------|----------|-------------------|--|
| x thc               |   | $A_{11}$        | $A_{12}$        | $A_{16}$        | $B_{11}$ | $B_{12}$ | B <sub>16</sub>   |  |
| Ny                  |   | A <sub>12</sub> | $A_{22}$        | $A_{26}$        | $B_{12}$ | $B_{22}$ | B <sub>26</sub>   |  |
| $N_{xy}^{thc}$      |   | A <sub>16</sub> | A <sub>26</sub> | A <sub>66</sub> | $B_{16}$ | $B_{26}$ | B <sub>66</sub>   |  |
| $M_x^{thc}$         | = | B <sub>11</sub> | $B_{12}$        | $B_{16}$        | $D_{11}$ | $D_{12}$ | D <sub>16</sub>   |  |
| $M_{v}^{thc}$       |   | B <sub>12</sub> | $B_{22}$        | $B_{26}$        | $D_{21}$ | $D_{22}$ | D <sub>26</sub>   |  |
| Mthc                |   | $LB_{16}$       | $B_{26}$        | $B_{66}$        | $D_{16}$ | $D_{26}$ | D <sub>66</sub> ] |  |
| x - xy              |   |                 |                 |                 |          |          |                   |  |



 $\kappa_x^T \Rightarrow \kappa_x^T + \frac{1}{R_x} (\varepsilon_x^T - \varepsilon_z^T)$ 



 $\varepsilon_x^0$ 

 $\varepsilon_y^0$  $\gamma_{xy}^0$  $\kappa_x$ 

 $\kappa_y \\ \kappa_{xy}$ 

#### Porovnání modelů pro C/PPS desky s jednou křivostí desky

- C/PPS, *V*<sub>f</sub>=49%, *∆T*=160°C
- tkanina 5H satin (atlasová vazba), vlákno Toray T300J 3K, dostava ve směru osnovy a útku n<sub>x</sub>=n<sub>y</sub>=7 na 1 cm, tloušťka tkaniny h=0,3 mm
- skladba
  - 32 vrstev [[(0,90)/(±45)]<sub>4</sub>]<sub>s</sub>
  - 36 vrstev [[(0,90)/(±45)]<sub>4</sub>/(0,90)]<sub>s</sub>
  - 40 vrstev  $[(0,90)/[(0,90)/(\pm 45)]_4/(0,90)]_s$

R<sub>y</sub>=5 mm R<sub>y</sub>=6 mm R<sub>v</sub>=7 mm

• termoelastické charakteristiky vlákna a matrice

| E <sub>fL</sub> [MPa]              | E <sub>fT</sub> [MPa] | V <sub>f</sub> [-]   | G <sub>f12</sub> [MPa] | G <sub>f23</sub> [MPa] | α <sub>fL</sub> [C <sup>-1</sup> ] |
|------------------------------------|-----------------------|----------------------|------------------------|------------------------|------------------------------------|
| 230000                             | 15000                 | 0,3                  | 50000                  | 27000                  | -3,8.10 <sup>-7</sup>              |
| α <sub>fT</sub> [C <sup>-1</sup> ] | Φ <sub>f</sub> [%]    | E <sub>m</sub> [MPa] | v <sub>m</sub> [-]     | α <sub>m</sub> [°C⁻¹]  | <b>Ф</b> <sub>т</sub> [%]          |
| 12,5.10 <sup>-6</sup>              | 0                     | 3800                 | 0,36                   | 5,2.10 <sup>-5</sup>   | 2,015                              |



 závislosti pro ostatní termoelastické charakteristiky celého kompozitu byly stanoveny analogicky







KONSTRUKCÍ

 tabulka koeficientů teplotních roztažností a koeficientů smrštění pro jednotlivé skladby
 PŘÍMÁ VLÁKNA
 ATLASOVÁ VAZBA

| Skladba                                                   | α <sub>x</sub><br>[C <sup>-1</sup> ] | α <sub>y</sub><br>[C <sup>-1</sup> ] | α <sub>z</sub><br>[C <sup>-1</sup> ] | α <sub>x</sub><br>[C <sup>-1</sup> ] | α <sub>y</sub><br>[C <sup>-1</sup> ] | α <sub>z</sub><br>[C <sup>-1</sup> ] |
|-----------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| [[(0,90)/(±45)] <sub>4</sub> ] <sub>s</sub>               | 4,98e <sup>-6</sup>                  | 4,98e <sup>-6</sup>                  | 3,88e <sup>-5</sup>                  | 5,08 e <sup>-6</sup>                 | 5,08 e <sup>-6</sup>                 | 3,86e <sup>-5</sup>                  |
| [[(0,90)/(±45)] <sub>4</sub> /(0,90)] <sub>s</sub>        | 4,70e <sup>-6</sup>                  | 4,70e <sup>-6</sup>                  | 3,93e <sup>-5</sup>                  | 4,81 e <sup>-6</sup>                 | 4,81 e <sup>-6</sup>                 | 3,91e <sup>-5</sup>                  |
| [(0,90)/[(0,90)/(±45)] <sub>4</sub> /(0,90)] <sub>s</sub> | 4,48e <sup>-6</sup>                  | 4,48e <sup>-6</sup>                  | 3,98e <sup>-5</sup>                  | 4,59e <sup>-6</sup>                  | 4,59e <sup>-6</sup>                  | 3,96e <sup>-5</sup>                  |

|                                                           | PŘÍN                  | /IÁ VLÁI              | KNA                   | ATLA                  | SOVÁ V                | /AZBA                 |
|-----------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Skladba                                                   | Φ <sub>x</sub><br>[-] | Φ <sub>y</sub><br>[-] | Φ <sub>z</sub><br>[-] | Φ <sub>x</sub><br>[-] | Φ <sub>y</sub><br>[-] | Φ <sub>z</sub><br>[-] |
| [[(0,90)/(±45)] <sub>4</sub> ] <sub>s</sub>               | 1,14e <sup>-3</sup>   | 1,14e <sup>-3</sup>   | 9,73e <sup>-3</sup>   | 1,16e <sup>-3</sup>   | 1,16e <sup>-3</sup>   | 9,7e <sup>-3</sup>    |
| [[(0,90)/(±45)] <sub>4</sub> /(0,90)] <sub>s</sub>        | 1,07e <sup>-3</sup>   | 1,07e <sup>-3</sup>   | 9,87e <sup>-3</sup>   | 1,1e <sup>-3</sup>    | 1,1e <sup>-3</sup>    | 9,81e <sup>-3</sup>   |
| [(0,90)/[(0,90)/(±45)] <sub>4</sub> /(0,90)] <sub>s</sub> | 1,01e <sup>-3</sup>   | 1,01e <sup>-3</sup>   | 9,97e <sup>-3</sup>   | 1, 04e <sup>-3</sup>  | 1,04e <sup>-3</sup>   | 9,91e <sup>-3</sup>   |

 měření změny tloušťky kompozitní desky metodou TMA (Visteon-Autopal Services s.r.o., Nový Jičín), verifikace s analytickým modelem



pro srovnání s analytickým modelem – vybrána lineární část mezi 100 a 200°C (jen teplotní vliv na změnu tloušťky)

Lineární část ochlazovací křivky v porovnání s analytickým výpočtem 200 Změna tloušťky [µm] vzorek 1 180 vzorek 2 160 140 vzorek 3 120 vzorek 4 100 vzorek 5 80 průměrná hodnota 60 analytické řešení 40 20 analytické řešení platnova vazba Teplota [°] analytické řešení saténová vazba 200 100

dobrá shoda modelu s naměřenými hodnotami

# Vliv matrice na velikost zpětného odpružení

- porovnání C/PPS desek s deskami, které by byly vyrobeny z C/PEEK a C/PEKK (tkanina i objemový podíl vláken zůstává stejný, mění se jen matrice)
- vlastnosti vlákna

| E <sub>fL</sub> [MPa] | Е <sub>fT</sub> [MPa] | ∨ <sub>f</sub> [-] | G <sub>f12</sub> [MPa] | G <sub>f23</sub> [MPa] | α <sub>fL</sub> [C <sup>-1</sup> ] | α <sub>fT</sub> [C <sup>-1</sup> ] | Φ <sub>f</sub> [%] |
|-----------------------|-----------------------|--------------------|------------------------|------------------------|------------------------------------|------------------------------------|--------------------|
| 230000                | 15000                 | 0,3                | 50000                  | 27000                  | -3,8.10 <sup>-7</sup>              | 12,5.10 <sup>-6</sup>              | 0                  |

vlastnosti matric

| Matrice | E <sub>m</sub> [MPa] | v <sub>m</sub> [-] | α <sub>m</sub> [°C <sup>-1</sup> ] | Φ <sub>m</sub> [%] | Relativní<br>cena |
|---------|----------------------|--------------------|------------------------------------|--------------------|-------------------|
| PPS     | 3800                 | 0,36               | 5,2.10 <sup>-5</sup>               | 2,015              | \$                |
| PEEK    | 3500                 | 0,4                | 4,7.10 <sup>-5</sup>               | 1,15               | \$\$\$            |
| PEKK    | 4400                 | 0,4                | 2,1.10 <sup>-5</sup>               | 1                  | \$\$              |

#### Vliv matrice na velikost zpětného odpružení



KONSTRUKCÍ

### Numerický model

- porovnání s experimentem provedeným ve spolupráci s Laboratoří biomechaniky člověka (jen teplotní vliv)
- porovnání s daty naměřenými u výrobce
- metoda konečných prvků software Abaqus
- porovnání SHELL, CONTINUUM SHELL a SOLID elementů

model podobný experimentu – SOLID elementy
 3D8I

### Numerický model

 porovnání s experimentem provedeným ve spolupráci s Laboratoří biomechaniky člověka (jen teplotní vliv)



- hlavním cílem bylo zjistit deformaci úhelníku vlivem změny teploty
- teplotní čidlo PT 100
- bezdotykový infračervený teploměr FLUKE 574
- laserový profilometr
  ScanControl LLT 2800-25
- optické sondy na měření vzdálenosti CHRocodile M4



- vzorek byl ohřát v peci na cca 100°C, vyjmut a následně chlazen na pokojové teplotě (25-27°C)
- měření začínalo na cca 95°C a končilo na cca 35° a trvalo cca 30 minut
- provedeno 7 měření
- vzorkovací frekvence laseru byla 20Hz
- vzorkovací frekvence optických sond byla 32Hz

- data z měření pomocí CHRocodile M4
- sondy zaměřily dva body na vertikální části ve vzájemné vzdálenosti 88,3 mm
- výstupem byl posuv bodů, který byl následně přepočítán na úhlovou změnu





Spring back angle vs. Temperature

- data z měření pomocí ScanControl LLT 2800-25
- varianta 1
- měření 20 mm horizontální a 20 mm vertikální části



- data z měření pomocí ScanControl LLT 2800-25
- varianta 2
- měření vertikální části





- data z měření pomocí ScanControl LLT 2800-25
- varianta 3
- měření po tloušťce

Var3, Measurement #0

ScanControl LLT 2800-25



z[mm]



#### Vliv proměnného objemového podílu vláken v rádiech

- vlivem výrobní technologie vzniká v rádiech dílů gradient objemového podílu vláken, který vede ke značné nesymetrii laminátu
- skladba je symetrická geometricky příslušné vrstvě nad neutrálnou osou odpovídá vrstva pod neutrálnou osou, avšak vlivem proměnnému objemovému podílu si neodpovídají termoelastické charakteristiky v těchto příslušných vrstvách
- vrstva, která je v kontaktu s tvářecím nástrojem má nejvyšší objemový podíl vláken, vrstva která je nejdále má objemový podíl nejnižší

#### Vliv proměnného objemového podílu vláken v rádiech

- 3 vybroušené vzorky (16, 18 a 20 vrstev)
- přes elektronový mikroskop, který byl propojen s počítačem a kamerou byly pořízeny fotografie skladby jednotlivých vzorků





#### Vliv proměnného objemového podílu vláken v rádiech

| GSA Ima<br>File Edit<br>Desktop | ge Analyser v3.8.1 (c) 2<br>Options Extra Help<br>Color Histogram |                         | 7                       |                        |          |                        |             |
|---------------------------------|-------------------------------------------------------------------|-------------------------|-------------------------|------------------------|----------|------------------------|-------------|
| Objects:                        | n. A. 10                                                          | 😭 min. Pixels / 0       | Dbject                  | max. Pixels/Object     |          | 10 S                   | how Objects |
| Density:<br>Area:               | 46,8<br>2291,942                                                  | %<br>Qrd. mm<br>NotePad | Length:<br>Sum:<br>Rese | n. A.<br>n. A.         | mm<br>mm | See object recognition | Settings    |
|                                 | Total                                                             | area of all objects (y  | ellow + blac            | :k): 4897,5035 Qrd. mm |          |                        | <br>:::     |

#### Vliv proměnného objemového podílu vláken v rádiech



KONSTRUKCÍ

#### Vliv proměnného objemového podílu vláken v rádiech





#### Aplikace analytického modelu na hybridní kompozit

- kompozitní deska s jednou křivostí, 8 vrstev tkaniny s uhlíkovou výztuží plus 1 vrstva tkaniny se skleněnou výztuží zevnitř (respektive zvenku nebo na obou stranách)
- tkanina 4H satin (atlasová vazba), dostava ve směru osnovy a útku n<sub>x</sub>=n<sub>y</sub>=6 na 1 cm, tloušťka *h*=0,04 mm, objemový podíl skelného vlákna V<sub>f</sub>=50,5 %

| Počet vrstev | Skladba                                                                    | Poloměr R <sub>y</sub> [mm] | Velikost úhlu [°] |
|--------------|----------------------------------------------------------------------------|-----------------------------|-------------------|
| 8C+2G        | <b>(0,90)</b> /[[(0,90)/(±45)] <sub>2</sub> ] <sub>s</sub> / <b>(0,90)</b> | 5,662                       | 99,647            |
| 8C+1G        | <b>(0,90)</b> /[[((0,90)/(±45)] <sub>2</sub> ] <sub>s</sub>                | 5,662                       | 99,647            |
| 8C+1G        | [[(0,90)/(±45)] <sub>2</sub> ] <sub>s</sub> / <b>(0,90)</b>                | 5,662                       | 99,647            |

# Aplikace analytického modelu na hybridní kompozit



# Aplikace analytického modelu na hybridní kompozit





- vytvořen program v Matlabu
- možnost výběru analytického modelu
  - přímá vlákna x zvlněná vlákna (tkaniny) x přímé zadávání prvků matice S a vektorů pro koeficienty teplotní roztažnosti, absorpce vlhkosti a smrštění
- uživatel zadává skladbu jednotlivých vrstev každá vrstva může být složena z jiného vlákna, jiné matrice (v případě tkanin i jiná dostava a jiná vazba), může mít jinou tloušťku a rovněž mít jiný objemový podíl → možnost výpočtu hybridních kompozitů (jak interlaminární tak intralaminární hybridy)
- uživatel dále volí, zda je deska rovná, nebo má jednu (případně dvě křivosti), zadává počáteční a koncovou teplotu (respektive vlhkost)
- k programu v Matlabu bylo vytvořeno uživatelské rozhraní v jazyce Java

• vývojový diagram







KONSTRUKCÍ



\_ 🗆 🗙

|            |           |                    |               |         |                | _      |   |   |                    |                      |   |
|------------|-----------|--------------------|---------------|---------|----------------|--------|---|---|--------------------|----------------------|---|
| utationa   | el Model  | Material & Lay     | LD Computatio | Composi | te Results     |        |   |   |                    |                      |   |
| Electric d |           | . For article care |               |         |                |        |   |   |                    |                      |   |
| A REPORT   | Comozario | e for whithe com   | po ante       |         |                |        |   |   |                    |                      |   |
| 57         | 0         | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
| E.;        | 0         | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
|            | 0         | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
| 1.00       |           | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
| West.      | 0         | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
|            |           | 0                  | 0             | 0       | 0              | 0      | 0 |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
| toisture   | offect    |                    |               | Rec     | rystallization | offect |   | _ | Temperature effect | -                    | 1 |
| 0          |           | 0                  |               | 1       | 0              | 0      |   |   | Porces & Mornants  | Strains & Curvatures |   |
| 0          |           | 0                  |               |         | 0              | 0      |   |   | 0                  | 0                    |   |
| 0          |           | 0                  |               |         | 0              | 0      |   |   | 0                  | 0                    |   |
| 0          |           | 0                  |               |         | 0              | 0      |   |   | 0                  | 0                    |   |
|            |           |                    |               |         |                |        |   |   | 1.0                | 0                    |   |
| -          |           | 100                | _             |         |                | -      |   |   | 200                |                      |   |
|            |           | 0                  |               |         | £.             | 0      |   |   | 565                |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |
|            |           |                    |               |         |                |        |   |   |                    |                      |   |

| Computational Model   Material & Lay up   Computations   Composite   Results |
|------------------------------------------------------------------------------|
|                                                                              |
| Abha a Deta D Phi-y<br>x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0               |
|                                                                              |

### Závěr a poděkování

- v rámci projektu Ministerstva průmyslu a obchodu ČR FR-TI1/463 a SGS12/176/OHK2/3T/12 Grantové agentury ČVUT v Praze byl sestaven analytický program pro výpočet zpětného odpružení úhlových sekcí kompozitních dílů
- analytický program umožňuje zadání jak přímých, tak zvlněných vláken (plátnová, keprová a atlasová vazba tkaniny) a výpočet zpětného odpružení i pro intra- a interlaminární hybridní kompozity
- výsledky vypočítané pomocí vytvořeného programu byly průběžně verifikovány s výsledky z výroby a s výsledky z experimentu realizovaného ve spolupráci s Laboratoří biomechaniky člověka a s výsledky získanými pomocí MKP softwaru Abaqus
- bylo dosaženo dobré shody analyticky predikovaných výsledků s výsledky z výroby
- program je možné použít jako nástroj pro predikci zpětného odpružení a s ním související korekce tvářecí formy